2.4 Hooke's law

Task

Can forces deform solid bodies?

In this experiment the deformation which is caused by the weight of "mass pieces" on two helical springs is measured. The deformation is a characteristic feature of each spring, nevertheless one can observe that a fundamental law is ruling here. It is the goal of this experiment to verify this law - Hooke's Law.

Use the space below for your own notes.

Material

Material from "TESS advanced Physics Set Mechanics 1, ME-1" (Order No. 15271-88)

Position No.	Material	Order No.	Quantity
1	Support base, variable	$02001-00$	1
2	Support rod, split in 2 rods, $I=600 \mathrm{~mm}$	$02035-00$	1
3	Bosshead	$02043-00$	1
4	Weight holder for slotted weights, 10 g	$02204-00$	1
5	Slotted weight, black coloured, 10 g	$02205-01$	4
5	Slotted weight, black coloured, 50 g	$02206-01$	3
6	Helical spring $3 \mathrm{~N} / \mathrm{m}$	$02220-00$	1
7	Helical spring, $20 \mathrm{~N} / \mathrm{m}$	$02222-00$	1
8	Holding pin	$03949-00$	1
9	Glass tube holder with tape measure clamp	$05961-00$	1
10	Measuring tape, $I=2 \mathrm{~m}$	$09936-00$	1

Material required for the experiment

Setup

First screw the split support rods together (Fig. 1). Set up a stand with the support base and the support rod as you can see in Fig. 2 and Fig. 3.

Fig. 1

Fig. 3

Clamp the extended measuring tape in the glass tube holder (Fig. 4) and clamp both on the base of the support rod (Fig. 5).

Fig. 4

Fig. 5

Fix the holding pin in the bosshead (Fig. 6) and hang the helical spring 1 in it (Fig. 7).

Adjust the length of the measuring tape so that its zero mark is exactly at the same level as the lower end of the helical spring. See Fig. 8 and Fig. 9.

Fig. 9

Action

- Hang the weight holder $(m=10 \mathrm{~g})$ on the hooked end of the spring and record the extension Δl (Fig. 10).
- Increase the mass by 10 g increments to a total of 50 g and read the corresponding changes in length Δl.
- Record all the values for the mass m and the extension / in Table 1 on the Results page.
- Calculate the weight (force) $F_{\mathrm{g}}=m \times 0.00981 \mathrm{~N} / \mathrm{g}$. You can see the values in as a graph.

Fig. 10
For fixing the slotted weight to the weight holder, you should slip the slotted weight over the top end of the weight holder (Fig. 11).

Fig. 11

- Exchange the helical spring 1 for the helical spring 2 . Move the measuring tape up or down until its zero mark is even with the lower end of the spring.
- Hang the weight holder with a 10 g mass piece (sum = 20 g) on the spring's hook and note the extension $\Delta /$. Determine the corresponding extensions in length.
- Increase the mass in 20 g increments up to a total of 200 g and determine the corresponding extensions in length.
- Record theses values in Table 1 on the Results page and calculate the weight (force), too.

In order to disassemble the support base you should press the yellow button (Fig. 12).

Results

Table 1

Mass m in g	Weight (force) $F_{\mathrm{g}} \mathrm{in} \mathrm{N}$	Deflection of Spring 1 $\Delta l \mathrm{in} \mathrm{cm}$	Deflection of Spring 2 $\Delta / \mathrm{in} \mathrm{cm}$
10			
20			
30			
40			
50			
60			
80			
100			
120			
140			
160			
180			
200			

Evaluation

Question 1:

What interrelationship can be seen in the plotted values (graphs)? What is the difference between the two helical springs?
\square

Question 2:

Which object is deformed by the slotted weights (mass pieces)?
\square

Question 3:

Do the values for the two springs lie in one straight line?
\square

Question 4:

Is the extension $\Delta /$ of the two springs proportional to the weight (force) F_{g} and thus to the mass m ?

Question 5:

Determine the proportionality factor (k) from the two curves:

1. $k_{1}=\Delta l_{1} / F_{\mathrm{g}_{1}} ; k_{1}=$ $\square$$\mathrm{m} / \mathrm{N}$
2. $k_{2}=\Delta I_{2} / F_{\mathrm{g}^{2}} ; k_{2}=\square \mathrm{m} / \mathrm{N}$

Additional Tasks

The two helical springs differ in their proportionality factors k. Their reciprocal $1 / k$ is called the spring constant D or deforming force:
$D=1 / k=F / \Delta l$
The spring constant is characteristic for a given spring.

Question 1:

Calculate the spring constant. Which of the two springs has the larger spring constant?
\square

Question 2:

What is the effect of this larger spring constant?
\square

Question 3:

Do your measurements agree with the declared spring constants in the material list?
\square

Question 4:

Are the deviations larger than $\pm 10 \%$?
\square

